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Digital Twin - Introduction @

* Digital twin technology is a virtual representation of a physical object, system, or process.

* |t combines real-time data, simulation, and analytics to create a digital replica that can be
used for monitoring, analysis, and optimization.

* In the context of offshore Industry, digital twin technology is used to create a virtual model of
the Assets, capturing physical characteristics, performance data, and environmental
conditions.




Digital Twin - How it Works @

*Installation of Sensors

*Data Collection and Transmission
*Data Integration and Analysis
*Creation of Digital Twin

*Real-Time Monitoring ana
Predictive Maintenance.

Source: SLB



Data Integration and Analysis (e.g. Fatigue or @
Predictive Maintenance)
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Challenges of Pre-trained Digital Twin Model @

* Data acquisition at the right locations
* Quantity of sensors to equip the whole asset

* Change in environment post training is not captured

 Data transmission - volume and speed




Novelty in Predicting Stresses @

* Combining numerical simulations with measured data
* The physics driven ML model is built from numerical simulations

* The model is then calibrated and corrected online using

 The calibrated model is then used to estimate stress in |

Stresses at 3 points (measured)

Wave elevation

Current speed

Stress at 5 points
predicted

N

Current direction
Ensemble

Seabed friction Kalman Filter

Pipe diameter

Pipe weight

Predicted stress at middle points




Novelty in Predicting Stresses @
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Case Study - Subsea Pipeline

* Rigid steel pipe of 30in diameter 1 km long
* Water depth of 40m

 Waves of 7m Hs and 9 sec

o, current of Im/sec, applied in the perpendicular direction
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Case Study - Stress Prediction @
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Summary

* A novel approach of combining numerical simulations with
measured data is presented to predict stresses in
real-time.

* Accuracy greater than 95 % is achieved on the test case
presented for a subsea pipeline

* Real-time monitoring helps in the reduction of ROV
inspection and aids the predictive maintenance schedule

* Tracking stress and fatigue improves useful remaining
fatigue lite using actual loading condition

* The framework presented is generic and can be extended
to various subsea applications

* The system relies on the accuracy of sensor data and
transmission interval which is a challenge as we venture
into deeper waters




Questions...

Contact us
nitin.repalle@causaldynamics.tech
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