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International
Trade volume = 12 billion tonnes p.a.[1] 

Growth = 2.1% p.a.[1]

CO2 emissions = 706 million tonnes p.a. (~2% of global energy related CO2 emissions)[1]

1 UNCTAD. (2023), 2 BITRE. (2023), 3Shipping Australia. (2020), 4ABS. (2023), 5DCCEEW. (2023)
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International
Trade volume = 12 billion tonnes p.a.[1] 

Growth = 2.1% p.a.[1]

CO2 emissions = 706 million tonnes p.a. (~2% of global energy related CO2 emissions)[1]

Australia
Trade volume = 1.7 billion tonnes p.a. (99% of Australia trade 
volume)[2,3] Growth = 1.4% p.a.[2]

Value = $600 billion (85% of Australia trade 
value)[2,4] CO2 emissions = 2 million tonnes p.a.[5]

‒ Estimated from miniscule bunker fuel sales
1 UNCTAD. (2023), 2 BITRE. (2023), 3Shipping Australia. (2020), 4ABS. (2023), 5DCCEEW. (2023)
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Conventional fuels considered:
• Heavy fuel oil (HFO)
• Very low sulphur fuel oil (VLSFO)
• Marine gas oil (MGO)

Alternative fuels considered:
• Liquefied natural gas (LNG)
• Compressed hydrogen (CH2)
• Liquefied hydrogen (LH2)
• Ammonia (NH3)
• Methanol (CH3OH)

Fuel production pathways considered:
• Fossil (F)
• Blue (BL)
• Bio (BIO)
• Green (E)

Conventional and alternative fuels



Emission intensity and energy cost
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(2021).
** Cost data from: 2IEA. (2019), 3IRENA & Methanol Institute. (2021), 5IEA. (2023), 7Ship & Bunker. (2023).
** The currency used is USD.
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Most to least polluting production pathways: fossil, blue, bio and green.
The reverse is true for the corresponding pathway costs.



Emission intensity and energy cost
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LNG and blue methanol have limited potentials to reduce GHG emissions compared to HFO.
Additionally, blue methanol is priced higher than any of the fuel oils.

* Emission intensity data from: 1Comer and Osipova (2021), 2IEA. (2019), 3IRENA & Methanol Institute. (2021), 4European Union. (2018), 5IEA. (2023), 6Zaimes, G. G. 
(2021).
** Cost data from: 2IEA. (2019), 3IRENA & Methanol Institute. (2021), 5IEA. (2023), 7Ship & Bunker. (2023).
** The currency used is USD.
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Low and zero GHG emissions options have the potential to achieve 80-100% reduction in GHG emissions compared to 
HFO.
However, these options are accompanied by a cost increase of up to three times.

Fossil Blue Bio Green

* Emission intensity data from: 1Comer and Osipova (2021), 2IEA. (2019), 3IRENA & Methanol Institute. (2021), 4European Union. (2018), 5IEA. (2023), 6Zaimes, G. G. 
(2021).
** Cost data from: 2IEA. (2019), 3IRENA & Methanol Institute. (2021), 5IEA. (2023), 7Ship & Bunker. (2023).
** The currency used is USD.



Low-speed engine

•Mechanically coupled 
(LSE-M)

Medium-speed engine

•Mechanically coupled 
(MSE-M)

•Electrically coupled 
(MSE-E)

Gas turbine

•Mechanically coupled 
(GT-M)

•Electrically coupled 
(GT-E)

Fuel cell

•Electrically coupled 
(FC-E)

Battery

•Electrically coupled 
(B-E)

Conventional and alternative propulsion systems

Conventional Alternative



Capital cost
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* The capital costs presented above exclude the energy storage components.
** The currency used is USD.
1Korberg, A. D. et. al. (2021), 2Aurecon. (2022), 3Kanchiralla, F. M. et. al. (2022), 4Trivyza, N. L. et. al. ( 2022)
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Medium-speed engines appear to require the lowest level of capital expenditure, followed by low-speed 
engines.

Mechanically coupled low-speed engine Mechanically coupled medium-speed engine Electrically coupled medium-speed engine GT-M GT-E Fuel cell Battery

* The capital costs presented above exclude the energy storage components.
** The currency used is USD.
1Korberg, A. D. et. al. (2021), 2Aurecon. (2022), 3Kanchiralla, F. M. et. al. (2022), 4Trivyza, N. L. et. al. ( 2022)
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Transmission and emission aftertreatment systems contribute significantly to the overall 
CAPEX.



Modelling of shipping performance



Modelling of shipping performance

The model accounts for route and ship specifications to determine sizes and propulsive 
power and subsequently feasibility as well as energy, emission and cost factors for each 
fuel and propulsion system option.



Shipping performance metric

• The levelised cost of shipping (LCOS):𝐿𝐶𝑂𝑆 =$ 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠𝑡𝑜𝑛𝑛𝑒 ∙ 𝑘𝑚 (𝑚𝑎𝑠𝑠 𝑜𝑓𝑔𝑜𝑜𝑑𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑑) ∙ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑)+ 𝑓𝑢𝑒𝑙 𝑐𝑜𝑠𝑡𝑠+ 𝑜𝑡ℎ𝑒𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠
• Emission intensity (EI):𝐸𝐼 𝑘𝑔𝐶𝑂2𝑒𝑡𝑜𝑛𝑛𝑒 ∙ 𝑘𝑚 = 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝐺𝐻𝐺 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑚𝑎𝑠𝑠 𝑜𝑓 𝑔𝑜𝑜𝑑𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑑) ∙ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑)

Transport work

Transport work



• Mass of iron ore traded = 722 million tonnes p.a.[1]

• Route distance = 6,000 km

• Vessel = 250,000 tonnes bulk carrier

• Total annual energy consumption = 213 PJ p.a.*

• Total annual GHG emissions = 21 million tonnesCO2e p.a.*

Case study: Australia – China iron ore corridor

Port Hedland

Shanghai

*Modelled results using methodology described. All iron ore exported to China is assumed to follow the illustrated route, transported by 250,000 tonne deadweight bulk carriers at 14 
knots, powered by HFO-fueled LSE-M.
[1BITRE. (2023), 2DCCEEW. (2022), 3DCCEEW. (2023)



Maximum operational range
Every ship, except those powered by battery, can make 1 return trip without comprising the cargo 
capacity!

*Modelled results using the methodology described.
**Operational ranges exceeding 100,000 km were omitted as they are less relevant and increasingly compromise cargo 
capacity.
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LCOS as a function of range
Results shown are for options employing low-speed engines.
Other propulsion systems demonstrate similar trends but higher LCOS relative to the low-speed engine cases due to their 

lower efficiencies. The battery-powered option is at least 1 order of magnitude more expensive than the HFO-fuelled options.
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*Modelled results using the methodology described.



LCOS as a function of range
Beyond a certain range, the use of compressed and liquefied hydrogen rapidly becomes uneconomic as the vessel 

transitions from being weight-limited to volume-limited.
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LCOS and emission intensity for 12,000 km range
Low and zero emissions options may increase the delivered costs of Australian iron ore to China by $5-12/tonne, or 10-20% of 

the iron price of $100/tonne.
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LCOS and emission intensity for 12,000 km range
Bio methanol or blue ammonia fuelled low-speed engines are the most cost-effective low GHG emissions 
options.
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LCOS and emission intensity for 12,000 km range
Green compressed hydrogen fuelled low-speed engine is the cheapest zero emission option.
However, for operational ranges exceeding 43,000 km the green liquefied hydrogen or methanol fuelled low-speed engine 

options are expected to have better economic performance.
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• Except for the battery option, all combinations of fuel and propulsion system considered appear to be 

plausible for shipping Australian iron ore to China on bulk carriers with representative deadweight. This even 

includes a single, return trip fuelled with gaseous hydrogen.

• Whilst low-emission fuels may at least double shipping costs, this is anticipated to increase the delivered costs 

of Australian iron ore to Asian trading partners by about 10-20% if the fuel tank is sized for 1 return trip. This is 

potentially a justifiable “green premium”, and there may be options to reduce these costs.

• Noting the many uncertainties in this work, blue ammonia and bio methanol appear to be the lowest cost 

low- emission shipping options, whilst green compressed or liquefied hydrogen and green methanol appear 

to be the lowest cost zero-emission shipping options.

• Ongoing work is examining how to reduce the LCOS further for different clean shipping types.

Conclusions
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